ELLIPSE

(KEY CONCEPTS & SOLUTIONS)

-ELLIPSE-

- 1. Definition
- 2. Equation of an Ellipse
- 3. Second form of Ellipse
- 4. General equation of the Ellipse
- 5. Parametric forms of the Ellipse
- 6. Point and Ellipse
- 7. Ellipse and Line
- 8. Equation of the Tangent

KEY CONCEPTS

1. Definition

An ellipse is the locus of a point which moves in such a way that its distance form a fixed point is in constant ratio to its distance from a fixed line. The fixed point is called the **focus** and fixed line is called the **directrix** and the constant ratio is called the **eccentricity of a ellipse** denoted by (e).

In other word, we can say an ellipse is the locus of a point which moves in a plane so that the sum of it distances from fixed points is constant.

2. Equation of an Ellipse

2.1 Standard Form of the equation of ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (a > b)

Let the distance between two fixed points S and S' be 2ae and let C be the mid point of SS'.

Taking CS as x- axis, C as origin.

Let P(h, k) be the moving point Let SP+ SP' = 2a (fixed distance) then

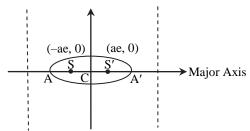
SP+S'P =
$$\sqrt{\{(h-ae)^2 + k^2\}} + \sqrt{\{(h+ae)^2 + k^2\}} = 2a$$

 $h^2(1-e^2) + k^2 = a^2(1-e^2)$

Hence Locus of P(h, k) is given by.

$$x^{2}(1-e^{2}) + y^{2} = a^{2}(1-e^{2})$$

$$\Rightarrow \frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$$



Directrix Minor Axis Directrix x = -a/e x = a/e

Let us assume that $a^2(1-e^2) = b^2$

 \therefore The standard equation will be given by

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

2.1.1 Various parameter related with standard ellipse :

Let the equation of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b)

(i) Vertices of an ellipse :

The points of the ellipse where it meets with the line joining its two foci are called its vertices.

For above standard ellipse A. A' are vertices

 $\mathbf{A}\equiv(\mathbf{a},\,\mathbf{0}),\,\mathbf{A}'\equiv(-\,\mathbf{a},\,\mathbf{0})$

(ii) Major axis :

The chord AA' joining two vertices of the ellipse is called its major axis.

Equation of major axis : y = 0Length of major axis = 2a

(iii) Minor axis :

The chord BB' which bisects major axis AA' perpendicularly is called minor axis of the ellipse.

Equation of minor axis x = 0

Length of minor axis = 2b

(iv) Centre :

The point of intersection of major axis and minor axis of an ellipse is called its centre.

For above standard ellipse

centre = C(0, 0)

(v) Directrix :

Equation of directrices are x = a/e and x = -a/e.

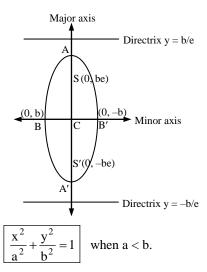
- (vi) **Focus :** S (ae, 0) and S' (– ae, 0) are two foci of an ellipse.
- (vii) **Latus Rectum :** Such chord which passes through either focus and perpendicular to the major axis is called its latus rectum.
- (viii) Length of Latus Rectum :

Length of Latus rectum is given by
$$\frac{2b^2}{a}$$

(ix) Relation between constant a, b, and e

$$b^2 = a^2(1-e^2) \Longrightarrow e = \sqrt{1-\frac{b^2}{a^2}}$$

3. Second form of Ellipse



For this ellipse

(i) centre : (0, 0)

(ii) vertices : (0, b); (0, -b)

(iii) foci : (0, be); (0, -be)

(iv) major axis : equation x = 0, length = 2b

(v) minor axis : equation y = 0, length = 2a

(vi) directrices : y = b/e, y = -b/e

(vii) length of latus ractum = $2a^2/b$

(viii) eccentricity :
$$e = \sqrt{1 - \frac{a^2}{b^2}}$$

. General equation of the ellipse

The general equation of an ellipse whose focus is (h,k) and the directrix is the line ax + by + c = 0 and the eccentricity will be e. Then let $P(x_1,y_1)$ be any point on the ellipse which moves such that SP = ePM

$$\Rightarrow (x_1 - h)^2 + (y_1 - k)^2 = \frac{e^2(ax_1 + by_1 + c)^2}{a^2 + b^2}$$

Hence the locus of (x_1, y_1) will be given by

 $(a^2 + b^2) [(x - h)^2 + (y - k)^2] = e^2(ax + by + c)^2$

Which is the equation of second degree from which we can say that any equation of second degree represent equation of an ellipse.

Note : Condition for second degree in X & Y to represent an ellipse is that if $h^2 = ab < 0$ & $\Delta = abc + 2 \text{ fgh} - af^2 - bg^2 - ch^2 \neq 0$

5. Parametric forms of the Ellipse

Let the equation of ellipse in standard form will be

given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Then the equation of ellipse in the parametric form will be given by $x = a \cos \phi$, $y = b \sin \phi$ where ϕ is the

eccentric angle whose value vary from $0 \le \phi < 2\pi$. Therefore coordinate of any point P on the ellipse will be given by (a cos ϕ , b sin ϕ).

6. Point and Ellipse

Let $P(x_1, y_1)$ be any point and let $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is the equation of an ellipse.

The point lies outside, on or inside the ellipse as if $S_1 = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1 > 0, = 0, < 0$

7. Ellipse and a Line

Let the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the given line be y = mx + c.

Solving the line and ellipse we get

$$\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$$

i.e. $(a^2m^2 + b^2) x^2 + 2 mca^2 x + a^2 (c^2 - b^2) = 0$

above equation being a quadratic in x.

:. discriminant = $4m^2c^2a^4 - 4a^2(a^2m^2 + b^2)(c^2 - b^2)$ = $b^2 \{(a^2m^2 + b^2) - c^2\}$

Hence the line intersects the ellipse in (i) two distinct points if $a^2m^2 + b^2 > c^2$

(ii) in one point if $c^2 = a^2m^2 + b^2$

(iii) does not intersect if $a^2m^2 + b^2 < c^2$

 \therefore y = mx $\pm \sqrt{(a^2m^2 + b^2)}$ touches the ellipse and condition for tangency $c^2 = a^2m^2 + b^2$.

Hence $y = mx \pm \sqrt{a^2m^2 + b^2}$, touches the ellipse

$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at } \left(\frac{\pm a^2 m}{\sqrt{a^2 m^2 + b^2}}, \frac{\pm b^2}{\sqrt{a^2 m^2 + b^2}} \right).$

8. Equation of the Tangent

0

(i) The equation of the tangent at any point (x_1, y_1)

n the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$.

(ii) The equation of tangent at any point ' ϕ ' is

$$\frac{x}{a}\cos\phi + \frac{y}{b}\sin\phi = 1$$

SOLVED EXAMPLES

- **Ex.1** The equation of an ellipse whose focus is (-1, 1), eccentricity is 1/2 and the directrix is x y + 3 = 0 is.
 - (A) $7x^2 + 7y^2 + 2xy + 10x 10y + 7 = 0$
 - (B) $7x^2 + 7y^2 + 2xy 10x 10y + 7 = 0$
 - (C) $7x^2 + 7y^2 + 2xy 10x + 10y + 7 = 0$
 - (D) None of these
- **Sol.[A]** Let P (x,y) be any point on the ellipse whose focus is S (-1,1) and the directrix is x y + 3 = 0.



PM is perpendicular from P (x,y) on the directrix x - y + 3 = 0.

Then by definition
SP = ePM

$$\Rightarrow (SP)^2 = e^2 (PM)^2$$

$$\Rightarrow (x + 1)^2 + (y - 1)^2 = \frac{1}{4} \left\{ \frac{x - y + 3}{\sqrt{2}} \right\}^2$$

$$\Rightarrow 8 (x^2 + y^2 + 2x - 2y + 2)$$

$$= x^2 + y^2 + 9 - 2xy + 6x - 6y$$

$$\Rightarrow 7x^2 + 7y^2 + 2xy + 10x - 10y + 7 = 0$$
which is the required equation of the ellipse.

Ex.2 The foci of an ellipse are $(\pm 2, 0)$ and its eccentricity is 1/2, the equation of ellipse is.

(A)
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
 (B) $\frac{x^2}{16} + \frac{y^2}{12} = 1$
(C) $\frac{x^2}{4} + \frac{y^2}{2} = 1$ (D) None of these

Sol.[B] Let the equation of the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,

Then coordinates of foci are $(\pm ae, 0)$.

$$\therefore ae = 2 \implies a \times \frac{1}{2} = 2 \qquad \qquad \left[\because e = \frac{1}{2} \right]$$
$$\implies a = 4$$
We have $b^2 = a^2 (1 - e^2)$

$$b^2 = 16\left(1 - \frac{1}{4}\right) = 12$$

Thus, the equation of the ellipse is $\frac{x^2}{16} + \frac{y^2}{12} = 1$.

Ex.3 The equation of the ellipse which passes through origin and has its foci at the points (1, 0) and (3, 0) is -

(A)
$$3x^2 + 4y^2 = x$$

(B) $3x^2 + y^2 = 12x$
(C) $x^2 + 4y^2 = 12x$
(D) $3x^2 + 4y^2 = 12x$

Sol.[D] Centre being mid point of the foci is

$$\left(\frac{1+3}{2},0\right) = (2,0)$$

Distance between foci 2ae = 2 ae = 1 or b² = a² (1 - e²) b² = a² - a²e² \Rightarrow a² - b² = 1 ...(i)

If the ellipse $\frac{(x-2)^2}{a^2} + \frac{y^2}{b^2} = 1$, then as it passes

from (0, 0)

$$\frac{4}{a^2} = 1 \Rightarrow a^2 = 4$$

from (i) $b^2 = 3$
Hence $\frac{(x-2)^2}{4} + \frac{y^2}{3} = 1$
or $3x^2 + 4y^2 - 12x = 0$

- **Ex.4** A man running round a racecourse notes that the sum of the distance of two flag posts from him is always 10 meters and the distance between the flag posts is 8 meters. The area of the path he encloses -
 - (A) 10π (B) 15π (C) 5π (D) 20π
- **Sol.[B]** The race course will be an ellipse with the flag posts as its foci. If a and b are the semi major and minor axes of the ellipse, then sum of focal distances 2a = 10 and 2ae = 8

$$a = 5, e = 4/5$$

:.
$$b^2 = a^2(1 - e^2) = 25 \left(1 - \frac{16}{25}\right) = 9$$

Area of the ellipse = πab

$$= \pi.5.3 = 15\pi$$

P

Ex.5 The distance of a point on the ellipse $\frac{x^2}{6} + \frac{y^2}{2} = 1$ from the centre is 2. Then eccentric angle of the point is -

(A)
$$\pm \frac{\pi}{2}$$
 (B) $\pm \pi$
(C) $\frac{\pi}{4}, \frac{3\pi}{4}$ (D) $\pm \frac{\pi}{4}$

Sol.[C] Any point on the ellipse is

 $(\sqrt{6} \cos \phi, \sqrt{2} \sin \phi)$, where ϕ is an eccentric angle. It's distance from the center (0, 0) is given 2.

 $6 \cos^2 \phi + 2 \sin^2 \phi = 4$ or $3 \cos^2 \phi + \sin^2 \phi = 2$ $2 \cos^2 \phi = 1$ $\Rightarrow \cos \phi = \pm \frac{1}{\sqrt{2}}; \phi = \frac{\pi}{4}, \frac{3\pi}{4}$

Ex.6 The equation of tangents to the ellipse $9x^2 + 16y^2 = 144$ which pass through the point (2, 3) -(A) y = 3 (B) x + y = 2(C) x - y = 3 (D) y = 3; x + y = 5

Sol.[D] Ellipse $9x^2 + 16y^2 = 144$

or
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

Any tangent is $y = mx + \sqrt{16m^2 + 9}$ it passes through (2, 3)

$$3 = 2m + \sqrt{16m^2 + 9}$$

(3 - 2m)² = 16m² + 9
m = 0, -1

Hence the tangents are y = 3, x + y = 5

Ex.7 The line $x = at^2$ meets the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the real points if -(A) |t| < 2 (B) $|t| \le 1$ (C) |t| > 1 (D) None of these

Sol.[B] Putting x = at² in the equation of the ellipse, we get

$$\frac{a^{2}t^{4}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \Longrightarrow y^{2} = b^{2}(1 - t^{4})$$

$$y^{2} = b^{2}(1 - t^{2}) (1 + t^{2})$$
This will give real values of y if
$$(1 - t^{2}) \ge 0 \mid t \mid \le 1$$

The equation $x^2 + 4y^2 + 2x + 16y + 13 = 0$ **Ex.8** represents a ellipse -(A) whose eccentricity is $\sqrt{3}$ (B) whose focus is $(\pm \sqrt{3}, 0)$ (C) whose directrix is $x = \pm \frac{4}{\sqrt{2}} - 1$ (D) None of these **Sol.**[C] We have $x^2 + 4y^2 + 2x + 16y + 13 = 0$ $(x^2 + 2x + 1) + 4(y^2 + 4y + 4) = 4$ $(x + 1)^2 + 4(y + 2)^2 = 4$ $\frac{(x+1)^2}{2^2} + \frac{(y+2)^2}{1^2} = 1$ Comparing with $\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$ X = x + 1, Y = y + 2where a = 2, b = 1and eccentricity of the ellipse $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$ Focus of the ellipse $(\pm ae, 0)$ $X = \pm$ are and Y = 0 $x + 1 = \pm 2$. $\frac{\sqrt{3}}{2}$ and y + 2 = 0 \Rightarrow x = -1 ± $\sqrt{3}$ and y = -2 \therefore Focus $(-1 \pm \sqrt{3}, -2)$ Directrix of the ellipse $X = \pm a/e$ $x + 1 = \pm \frac{2}{\sqrt{3}/2};$ $x = \pm \frac{4}{\sqrt{3}} - 1$

Ex.9 Product of the perpendiculars from the foci upon

any tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is -(A) b (B) a (C) a^2 (D) b^2

Sol.[D] The equation of any tangent to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ is } y = mx + \sqrt{a^2m^2 + b^2}$$

 $\Rightarrow mx - y + \sqrt{a^2m^2 + b^2} = 0 \qquad ...(i)$ The two foci of the given ellipse are S(ae, 0) and S' (-ae, 0). let p₁ and p₂ be the lengths of perpendicular from S and S' respectively on (i), Then $p_1 =$ length of perpendicular from S(ae, 0) on (i)

$$p_1 = \frac{mae + \sqrt{a^2m^2 + b^2}}{\sqrt{m^2 + 1}}$$

 $p_2 =$ length of perpendicular from S'(-ae, 0) on (i)

$$p_2 = \frac{-mae + \sqrt{a^2m^2 + b^2}}{\sqrt{m^2 + 1}}$$

Now $p_1 p_2$

$$\left(\frac{\mathrm{mae} + \sqrt{\mathrm{a}^2 \mathrm{m}^2 + \mathrm{b}^2}}{\sqrt{\mathrm{m}^2 + 1}}\right) \left(\frac{-\mathrm{mae} + \sqrt{\mathrm{a}^2 \mathrm{m}^2 + \mathrm{b}^2}}{\sqrt{\mathrm{m}^2 + 1}}\right)$$
$$= \frac{\mathrm{a}^2 \mathrm{m}^2 (1 - \mathrm{e}^2) + \mathrm{b}^2}{1 + \mathrm{m}^2} \because \mathrm{b}^2 = \mathrm{a}^2 (1 - \mathrm{e}^2)$$
$$= \frac{\mathrm{m}^2 \mathrm{b}^2 + \mathrm{b}^2}{1 + \mathrm{m}^2} = \frac{\mathrm{b}^2 (\mathrm{m}^2 + 1)}{\mathrm{m}^2 + 1} = \mathrm{b}^2$$

Ex.10 The equation of the ellipse whose axes are along the coordinate axes, vertices are $(\pm 5,0)$ and foci at $(\pm 4,0)$ is.

(A)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
 (B) $\frac{x^2}{25} + \frac{y^2}{16} = 1$
(C) $\frac{x^2}{25} + \frac{y^2}{12} = 1$ (D) None of these

Sol.[A] Let the equation of the required ellipse be

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad ...(1)$$

The coordinates of its vertices and foci are $(\pm a, 0)$ and $(\pm ae, 0)$ respectively.

$$a = 5$$
 and $ae = 4 \implies e = 4/5$.

Now,
$$b^2 = a^2 (1 - e^2) \Longrightarrow b^2 = 25 \left(1 - \frac{16}{25} \right) = 9.$$

Substituting the values of a^2 and b^2 in (1), we get

$$\frac{x^2}{25} + \frac{y^2}{9} = 1,$$

which is the equation of the required ellipse.

Ex.11 Find the centre, the length of the axes and the eccentricity of the ellipse $2x^2+3y^2-4x-12y+13=0$.

Sol. The given equation can be rewritten as

$$2[x^2 - 2x] + 3[y^2 - 4y] + 13 = 0$$

or $2(x - 1)^2 + 3(y - 2)^2 = 1$

or
$$\frac{(x-1)^2}{(1/\sqrt{2})^2} + \frac{(y-2)^2}{(1/\sqrt{3})^2} = 1$$
,
Comparing with $\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$
 \therefore Centre X = 0, Y = 0 i.e. (1,2)
Length of major axis = $2a = \sqrt{2}$
Length of minor axis = $2b = 2/\sqrt{3}$ and
 $e = \sqrt{1 - \frac{b^2}{a^2}} = \frac{1}{\sqrt{3}}$

- **Ex.12** Find the equations of the tangents to the ellipse $4x^2 + 3y^2 = 5$ which are inclined at an angle of 60° to the axis of x. Also, find the point of contact.
- Sol. The slope of the tangent = tan 60° = $\sqrt{3}$ Now, $4x^2 + 3y^2 = 5 \Rightarrow \frac{x^2}{5/4} + \frac{y^2}{5/3} = 1$ This is of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a^2 = \frac{5}{4}$ and $b^2 = \frac{5}{3}$. We know that the equations of the tangents of slope m to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are given by $y = mx \pm \sqrt{a^2m^2 + b^2}$ and the coordinates of the points of $contact are\left(\pm \frac{a^2m}{\sqrt{a^2m^2 + b^2}}, \mp \frac{b^2}{\sqrt{a^2m^2 + b^2}}\right)$ Here, $m = \sqrt{3}$, $a^2 = 5/4$ and $b^2 = 5/3$. So, the equations of the tangents are $y = \sqrt{3} x \pm \sqrt{\left(\frac{5}{4} \times 3\right) + \frac{5}{3}}$ i.e. $y = \sqrt{3} x \pm \sqrt{\frac{65}{12}}$

The coordinates of the points of contact are

$$\left(\pm \frac{5\sqrt{3}/4}{\sqrt{65/12}}, \mp \frac{5/3}{\sqrt{65/12}}\right) \text{ i.e}$$
$$\left(\pm \frac{3\sqrt{65}}{26}, \mp \frac{2\sqrt{195}}{39}\right)$$

Ex.13 The radius of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and having its centre (0, 3) is -(A) 4 (B) 3 (C) $\sqrt{12}$ (D) 7/2 **Sol.[A]** $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{9}{16}} \quad \therefore e = \frac{\sqrt{7}}{4}$ \therefore Foci are (± ae, 0) or (± $\sqrt{7}$, 0) Centre of circle is (0, 3) and passes through foci $(\pm \sqrt{7}, 0)$ \therefore Radius = $\sqrt{7+9} = 4$ Ex.14 The eccentricity of the ellipse represented by the equation $25x^2 + 16y^2 - 150x - 175 = 0$ is-(A) 2/5 (B) 3/5 (C) 4/5 (D) None of these **Sol.[B]** $25(x^2 - 6x + 9) + 16y^2 = 175 + 225$ or $25(x-3)^2 + 16y^2 = 400$ or $\frac{X^2}{16} + \frac{Y^2}{25} = 1$. (b > a) Form $\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$

.: Major axis lies along y- axis. ;

$$\therefore e = \sqrt{1 - \frac{a^2}{b^2}} = 1 - \sqrt{\frac{16}{25}}$$
$$\therefore e = \frac{3}{5}$$

For what value of λ does the line $y = x + \lambda$ Ex.15 touches the ellipse $9x^2 + 16y^2 = 144$.

:: Equation of ellipse is Sol.

9x²+16y²=144 or
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

Comparing this with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
then we get $a^2 = 16$ and $b^2 = 9$
& comparing the line $y = x + \lambda$ with $y = mx + c$
 \therefore m = 1 and c = λ
If the line $y = x + \lambda$ touches the ellipse
9x² + 16y² = 144, then
c² = a²m² + b²
 $\Rightarrow \lambda^2 = 16 \times 1^2 + 9$
 $\Rightarrow \lambda^2 = 25$
 $\therefore \lambda = \pm 5$

Ex.16 Find the equations of the tangents to the ellipse $3x^2 + 4y^2 = 12$ which are perpendicular to the line y + 2x = 4.

Sol. Let m be the slope of the tangent, since the tangent is perpendicular to the line y + 2x = 4.

$$\therefore m \times -2 = -1 \qquad \Rightarrow m = \frac{1}{2}$$

Since $3x^2 + 4y^2 = 12$
or $\frac{x^2}{4} + \frac{y^2}{3} = 1$
Comparing this with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
$$\therefore a^2 = 4 \text{ and } b^2 = 3$$

So the equation of the tangents are
 $y = \frac{1}{2}x \pm \sqrt{4x\frac{1}{4}+3}$

 \Rightarrow y = $\frac{1}{2}$ x ± 2 or x - 2y ± 4 = 0

