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KEY CONCEPTS 
 

     1.   Definition 
 

  An ellipse is the locus of a point which moves in such 

a way that its distance form a fixed point is in 

constant ratio to its distance from a fixed line. The 

fixed point is called the focus and fixed line is called 

the directrix and the constant ratio is called the 

eccentricity of a ellipse denoted by (e). 

 In other  word, we can say an ellipse is the locus of a 

point which moves in a plane so that the sum of it 

distances from fixed points is constant. 

     2.   Equation of an Ellipse 
 

2.1 Standard Form of the equation of ellipse 
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  (a > b) 

 Let the distance between two fixed points S and S' be 

2ae and let C be the mid point of SS. 

 Taking CS as x- axis, C as origin.  

 Let P(h, k) be the moving point Let SP+ SP = 2a  

(fixed distance) then 

 SP+S'P = }k)aeh{( 22  + }k)aeh{( 22  = 2a 

 h2(1– e2) + k2 = a2(1 – e2) 

 Hence Locus of P(h, k) is given by. 

 x2(1– e2) + y2 = a2(1– e2)  
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2.1.1 Various parameter related with standard ellipse : 

 Let the equation of the ellipse 1
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  (a > b) 

 (i)  Vertices of an ellipse :  

  The points of the ellipse where it meets with the 

line joining its two foci are called its vertices. 

  For above standard ellipse A. A are vertices  

  A  (a, 0), A (– a, 0)  

 (ii)  Major axis : 

  The chord AA joining two vertices of the ellipse 

is called its major axis. 

  Equation of major axis : y = 0 

  Length of major axis = 2a 

 (iii) Minor axis :  

  The chord BB which bisects major axis AA 

perpendicularly is called minor axis of the 

ellipse. 

  Equation of minor axis x = 0 

  Length of minor axis = 2b 

 (iv) Centre :  

  The point of intersection of major axis and minor 

axis of an ellipse is called its centre. 

  For above standard ellipse 

            centre = C(0, 0) 

 (v) Directrix :  

  Equation of directrices are x= a/e and x = – a/e. 

 (vi)  Focus : S (ae, 0) and S (– ae, 0) are two foci  

 of an ellipse. 

 (vii) Latus Rectum : Such chord which passes  

 through either focus and perpendicular to the  

 major axis is called its latus rectum. 

 (viii) Length of Latus Rectum :  

  Length of Latus rectum is given by 
a

b2 2

. 

 (ix) Relation between constant a, b, and e 

  b2 = a2(1– e2) e =
2
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     3.   Second form of Ellipse 
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   when a < b. 

 For this ellipse 

 (i) centre : (0, 0) 

 (ii) vertices : (0, b) ; (0, – b) 

 (iii) foci : (0, be) ; (0, – be) 

 (iv) major axis : equation x = 0, length = 2b 

 (v) minor axis : equation y = 0, length = 2a  

 (vi) directrices : y = b/e, y = – b/e 

 (vii) length of latus ractum = 2a2/b  

 (viii) eccentricity : e = 
2
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     4.   General equation of the ellipse  

 The general equation of an ellipse whose focus is 

(h,k) and the directrix is the line ax + by + c = 0  

and the eccentricity will be e. Then let P(x1,y1) be any 

point on the ellipse which moves such that SP = ePM 

 (x1– h)2 + (y1– k)2 = 
22

2
11

2

ba

)cbyax(e




 

 Hence the locus of (x1,y1) will be given by 

 (a2 + b2) [(x – h)2 + (y – k)2] = e2(ax + by + c)2 

 Which is the equation of second degree from which 

we can say that any equation of second degree 

represent equation of an ellipse. 

 Note : Condition for second degree in X & Y to 

represent an ellipse is that if h2 = ab < 0 & 

= abc + 2 fgh – af2 – bg2 – ch2  0 

     5.   Parametric forms of the Ellipse 
 

 Let the equation of ellipse in standard form will be  

given by  
2
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 = 1 

 Then the equation of ellipse in the parametric form 

will be given by x = a cos , y = b sin  where  is the 

eccentric angle whose value vary from 0   < 2. 

Therefore coordinate of any point P on the ellipse will 

be given by (a cos , b sin ). 

     6.   Point and Ellipse 
 

 Let P(x1, y1) be any point and let 
2
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y
= 1 is the 

equation of an ellipse.  

 The point lies outside, on or inside the ellipse as if  

S1 = 
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2
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– 1 > 0,  = 0, < 0 

     7.   Ellipse and a Line 
 

 Let the ellipse be 
2

2

a

x
 + 
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b

y
= 1 and the given line be 

y = mx + c. 

 Solving the line and ellipse we get  
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 + 
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)cmx( 
 = 1 

 i.e. (a2m2 + b2) x2 + 2 mca2 x + a2 (c2 – b2) = 0 

 above equation being a quadratic in x. 

  discriminant = 4m2c2a4 – 4a2 (a2m2 + b2) ( c2– b2) 

     = b2 {(a2m2 + b2 )– c2} 

 Hence the line intersects the ellipse in  

(i) two distinct points if a2m2 + b2 > c2 

 (ii) in one point if c2 = a2m2 + b2 

 (iii) does not intersect if a2m2 + b2 < c2 

  y = mx ±  222 bma   touches the ellipse and 

condition for tangency c2 = a2m2 + b2. 

 Hence y = mx ±  222 bma  , touches the ellipse 

2

2

a

x
 + 

2

2

b

y
= 1 at 























222

2

222

2

bma

b
,

bma

ma
. 

     8.   Equation of the Tangent 
 

 (i)  The equation of the tangent at any point (x1, y1) 

on the ellipse 
2
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x
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y
= 1 is 
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yy
= 1. 

 (ii)  The equation of tangent at any point ‘’ is 

  
a

x
cos  + 

b

y
sin  = 1. 



 

SOLVED EXAMPLES 
 

Ex.1 The equation of an ellipse whose focus is  

(–1, 1), eccentricity is 1/2 and the directrix is  

x – y + 3 = 0 is. 

 (A) 7x2 + 7y2 + 2xy + 10x – 10y + 7 = 0  

 (B) 7x2 + 7y2 + 2xy – 10x – 10y + 7 = 0  

 (C) 7x2 + 7y2 + 2xy – 10x + 10y + 7 = 0  

 (D) None of these 

Sol.[A] Let P (x,y) be any point on the ellipse whose 

focus is S (–1,1) and the directrix is x – y + 3 = 0. 

 

M P(x,y) 

S(–1,1) 
 

  PM is perpendicular from P (x,y) on the directrix  

 x –y + 3 = 0.  

  Then by definition 

        SP = ePM 

  (SP)2 =e2 (PM)2 

   (x + 1)2 + (y – 1)2 = 

4

1
 

2

2
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  8 (x2 + y2 + 2x – 2y + 2)  

  = x2 + y2 + 9 – 2xy + 6x – 6y 

   7x2 + 7y2 + 2xy + 10x – 10y + 7 = 0 

  which is the required equation of the ellipse. 

 

Ex.2 The foci of an ellipse are (±2, 0) and its 

eccentricity is 1/2, the equation of ellipse is. 

 (A) 1
9

y

16

x 22

  (B) 1
12

y

16

x 22

   

 (C) 1
2

y

4

x 22

  (D) None of these 

Sol.[B] Let the equation of the ellipse be 
2

2

a

x
+ 

2

2

b

y
= 1, 

Then coordinates of foci are (± ae, 0). 

   ae = 2   a × 
2

1
 = 2  










2

1
e  

   a = 4 

  We have b2 = a2 (1– e2) 

   b2 = 16 









4

1
1  = 12 

 Thus, the equation of the ellipse is 
16

x2

+ 
12

y2

= 1. 

 

Ex.3 The equation of the ellipse which passes through 

origin and has its foci at the points (1, 0) and  

(3, 0) is - 

 (A) 3x2 + 4y2 = x (B) 3x2 + y2 = 12x  

 (C) x2 + 4y2 = 12x (D) 3x2 + 4y2 = 12x 

Sol.[D]  Centre being mid point of the foci is 

  






 
0,

2

31
 = (2, 0)  

 Distance between foci 2ae = 2 

 ae = 1 or b2 = a2 (1 – e2)    

 b2 = a2 – a2e2  a2 – b2 = 1 …(i) 

 If the ellipse 
2

2

a

)2x( 
+ 

2

2

b

y
= 1, then as it passes 

from (0, 0) 

         
2a

4
 = 1  a2 = 4 

 from (i)     b2 = 3 

 Hence 
4

)2x( 2
+ 

3

y2

= 1 

 or    3x2 + 4y2 – 12x = 0 

 

Ex.4 A man running round a racecourse notes that the 

sum of the distance of two flag posts from him is 

always 10 meters and the distance between the 

flag posts is 8 meters. The area of the path he 

encloses - 

 (A) 10  (B) 15  

 (C) 5  (D) 20

Sol.[B] The race course will be an ellipse with the flag 

posts as its foci. If a and b are the semi major and 

minor axes of the ellipse, then sum of focal 

distances 2a = 10 and 2ae = 8 

  a = 5, e = 4/5 

  b2 = a2(1 – e2) = 25  









25

16
1  = 9 

 Area of the ellipse = ab 

                         = .5.3 =15

 



 

Ex.5 The distance of a point on the ellipse 

6

x2

+
2

y2

= 1 from the centre is 2. Then eccentric 

angle of the point is - 

 (A) ± 
2


  (B) ±  

 (C) 
4

3
,

4


  (D) ± 

4


 

Sol.[C] Any point on the ellipse is 

 ( 6  cos , 2 sin ), where  is an eccentric 

angle. 

 It's distance from the center (0, 0) is given 2.  

 6 cos2  + 2 sin2  = 4 

 or 3 cos2  + sin2  = 2 

  2 cos2  = 1 

   cos  = ± 
2

1
;  = 

4

3
,

4


 

 

Ex.6 The equation of tangents to the ellipse  

9x2 + 16y2 = 144 which pass through the point  

(2, 3) - 

 (A) y = 3  (B) x + y = 2  

 (C) x – y = 3  (D) y = 3 ; x + y = 5 
 

Sol.[D] Ellipse 9x2 + 16y2 = 144 

 or  
9

y

16

x 22

  = 1 

 Any tangent is y = mx + 9m16 2   it passes 

through (2, 3) 

  3 = 2m + 9m16 2   

  (3 – 2m)2 = 16m2 + 9 

  m = 0, –1 

 Hence the tangents are y = 3, x + y = 5 

 

Ex.7 The line x = at2 meets the ellipse 
2

2

2

2

b

y

a

x
 = 1 in 

the real points if - 

 (A) | t | < 2  (B) | t |  1   

 (C) | t | >1  (D) None of these 
 

Sol.[B]  Putting x = at2 in the equation of the ellipse, we 

get 

  
2

2

2

42

b

y

a

ta
  = 1  y2 = b2(1 – t4) 

 y2 = b2(1 – t2) (1 + t2) 

 This will give real values of y if  

 (1 – t2)  0 | t |  1 

Ex.8 The equation x2 + 4y2 + 2x + 16y + 13 = 0 

represents a ellipse - 

 (A) whose eccentricity is 3  

 (B) whose focus is (± 3 , 0) 

 (C) whose directrix is x = ±
3

4
 – 1 

 (D) None of these 
 

Sol.[C]  We have x2 + 4y2 + 2x + 16y + 13 = 0 

  (x2 + 2x + 1) + 4(y2 + 4y + 4) = 4 

  (x + 1)2 + 4(y + 2)2 = 4 
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 = 1 

 Comparing with 
2

2
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b

Y

a

X
 = 1  

 where  X = x + 1, Y = y + 2 

 and   a = 2, b = 1 

 eccentricity of the ellipse 

 e = 
2

3

4

1
11

2

2
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b
 

 Focus of the ellipse (± ae, 0) 

 X = ± ae and Y = 0 

 x + 1 = ± 2. 
2

3
 and y + 2 = 0 

  x = – 1 ± 3  and y = – 2 

  Focus (– 1 ± 3 , – 2)  

 Directrix of the ellipse X = ± a/e 

 x + 1 = ± 
2/3

2
; x =  ± 

3

4
 – 1 

 

Ex.9 Product of the perpendiculars from the foci upon 

any tangent to the ellipse 
2

2

a

x
 + 

2

2

b

y
 = 1 is - 

 (A) b  (B) a  

 (C) a2  (D) b2 

 

Sol.[D]  The equation of any tangent to the ellipse 
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y
 = 1 is y = mx + 

222 bma   

 

  mx – y +
222 bma  = 0          ...(i) 

 The two foci of the given ellipse are S(ae, 0) and 

S (–ae, 0). let p1 and p2 be the lengths of 

perpendicular from S and S respectively on (i), 

Then  

 



 

 p1 = length of perpendicular from S(ae, 0) on (i) 

 p1 = 
1m

bmamae
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 p2 = length of perpendicular from S(–ae, 0) on (i) 

 p2 =
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bmamae
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  b2 = a2 (1 – e2) 
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Ex.10 The equation of the ellipse whose axes are along 

the coordinate axes, vertices are (± 5,0) and foci 

at (± 4,0) is. 

 (A) 1
9

y

25

x
22

  (B) 1
16
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x
22

   

 (C) 1
12

y

25

x
22

  (D) None of these 

Sol.[A] Let the equation of the required ellipse be 

 
2

2

a

x
  + 

2

2

b

y
 = 1  ...(1) 

 The coordinates of its vertices and foci are  

(± a, 0) and (± ae,0) respectively. 

  a = 5 and ae = 4  e = 4/5. 

 Now, b2 = a2 (1– e2)  b2 = 25 









25

16
1 = 9. 

 Substituting the values of a2 and b2 in (1), we get 

25

x2

+
9

y2

 = 1,  

 which is the equation of the required ellipse.  

 

Ex.11 Find the centre, the length of the axes and the 

eccentricity of the ellipse 2x2+3y2–4x–12y+13= 0.  

Sol. The given equation can be rewritten as  

2[x2 – 2x] + 3 [y2 – 4y] + 13 = 0 

 or 2 (x – 1)2 + 3 (y– 2)2 = 1 

 or 
2

2

)2/1(

)1x( 
 + 

2

2

)3/1(

)2y( 
= 1, 

 Comparing with 
2

2

a

X
 +

2

2

b

Y
 = 1

  Centre X = 0, Y = 0 i.e. (1,2) 

 Length of major axis = 2a = 2  

 Length of minor axis = 2b = 2/ 3  and 

 e =
2

2

a

b
1 =

3

1
 

 

Ex.12 Find the equations of the tangents to the ellipse 

4x2 + 3y2 = 5 which are inclined at 

an angle of 60º to the axis of x. Also, find the 

point of contact. 

Sol. The slope of the tangent = tan 60º = 3  

 Now, 4x2 + 3y2 = 5  
3/5

y

4/5

x 22

  = 1 

 This is of the form 
2

2

a

x
+

2

2

b

y
= 1, where  

 a2 =
4

5
 and b2 =

3

5
. We know that the equations 

of the tangents of slope m to the ellipse  

2

2

a

x
+

2

2

b

y
= 1 are given by y = mx ± 

222 bma   and the coordinates of the points of 

contact are
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 Here, m = 3 , a2 = 5/4 and b2 = 5/3. 

 So, the equations of the tangents are   

y = 3 x ± 
3

3
4

5 









   i.e. y = 3 x ± 

12

65
 

 The coordinates of the points of contact are  
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Ex.13 The radius of the circle passing through the foci 

of the ellipse 
16

x2

 + 
9

y2

= 1, and having its 

centre (0, 3) is - 

 (A) 4  (B) 3  

 (C) 12   (D) 7/2 

Sol.[A]  e = 
2

2

a

b
1  =  

16

9
1     e = 

4

7
 

  Foci are (± ae, 0) or (± 7 , 0) 

 Centre of circle is (0, 3) and passes through foci 

(± 7 , 0) 

     Radius = 97  = 4  

 

Ex.14 The eccentricity of the ellipse represented by the 

equation 25x2 + 16y2 – 150 x – 175 = 0 is- 

 (A) 2/5  (B) 3/5   

 (C) 4/5  (D) None of these 

Sol.[B]  25(x2 – 6x + 9) + 16y2 = 175 + 225 

 or 25(x – 3)2 +16y2 = 400 or 
16

X2

+
25

Y2

= 1. (b > a)  

 Form 
2

2

a

X
 + 

2

2

b

Y
= 1 

  Major axis lies along y- axis. ;

  e =
2

2

b

a
1  = 1 –

25

16
;  

  e =
5

3
 

 

Ex.15 For what value of  does the line y = x +  

touches the ellipse 9x2 + 16y2 = 144. 

Sol.   Equation of ellipse is 

  9x2 + 16y2 = 144 or  
16

x2

 + 
9

y2

= 1 

  Comparing this with 
2

2

a

x
 + 

2

2

b

y
 = 1 

  then we get a2 = 16 and b2 = 9 

  & comparing the line y = x +  with y = mx + c 

   m  = 1 and c =  

  If the line y = x +  touches the ellipse 

   9x2 + 16y2 = 144, then 

   c2 = a2m2 + b2 

   = 16 × 12 + 9 

  2 = 25 

    = ± 5 

Ex.16 Find the equations of the tangents to the ellipse  

3x2 + 4y2 = 12 which are perpendicular to the 

line y + 2x = 4. 

Sol.  Let m be the slope of the tangent, since the 

tangent is perpendicular to the line y + 2x = 4. 

   m × – 2 = – 1  m = 
2

1
 

  Since  3x2 + 4y2 = 12 

  or 
4

x2

 + 
3

y2

= 1 

  Comparing this with 
2

2

a

x
 + 

2

2

b

y
 = 1 

   a2 = 4 and b2 = 3 

  So the equation of the tangents are  

   y = 
2

1
x ± 3

4

1
x4   

  y = 
2

1
x ± 2     or  x – 2y ± 4 = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 


