ELLIPSE
(KEY CONCEPTS \& SOLUTIONS)

-ELLIPSE-

1. Definition
2. Equation of an Ellipse
3. Second form of Ellipse
4. General equation of the Ellipse
5. Parametric forms of the Ellipse
6. Point and Ellipse
7. Ellipse and Line
8. Equation of the Tangent

1. Definition

An ellipse is the locus of a point which moves in such a way that its distance form a fixed point is in constant ratio to its distance from a fixed line. The fixed point is called the focus and fixed line is called the directrix and the constant ratio is called the eccentricity of a ellipse denoted by (e).

In other word, we can say an ellipse is the locus of a point which moves in a plane so that the sum of it distances from fixed points is constant.

2. Equation of an Ellipse

2.1 Standard Form of the equation of ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad(a>b)
$$

Let the distance between two fixed points S and S^{\prime} be 2ae and let C be the mid point of SS^{\prime}.

Taking CS as $\mathrm{x}-$ axis, C as origin.
Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be the moving point Let $\mathrm{SP}+\mathrm{SP}^{\prime}=2 \mathrm{a}$ (fixed distance) then
$\mathrm{SP}+\mathrm{S}^{\prime} \mathrm{P}=\sqrt{\left\{(\mathrm{h}-\mathrm{ae})^{2}+\mathrm{k}^{2}\right\}}+\sqrt{\left\{(\mathrm{h}+\mathrm{ae})^{2}+\mathrm{k}^{2}\right\}}=2 \mathrm{a}$
$h^{2}\left(1-\mathrm{e}^{2}\right)+\mathrm{k}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)$
Hence Locus of $\mathrm{P}(\mathrm{h}, \mathrm{k})$ is given by.
$x^{2}\left(1-e^{2}\right)+y^{2}=a^{2}\left(1-e^{2}\right)$
$\Rightarrow \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)}=1$

Let us assume that $\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)=\mathrm{b}^{2}$
\therefore The standard equation will be given by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

2.1.1 Various parameter related with standard ellipse :

Let the equation of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$

(i) Vertices of an ellipse :

The points of the ellipse where it meets with the line joining its two foci are called its vertices.

For above standard ellipse A. A^{\prime} are vertices
$\mathrm{A} \equiv(\mathrm{a}, 0), \mathrm{A}^{\prime} \equiv(-\mathrm{a}, 0)$
(ii) Major axis :

The chord AA^{\prime} joining two vertices of the ellipse is called its major axis.

Equation of major axis: $y=0$
Length of major axis $=2 \mathrm{a}$
(iii) Minor axis :

The chord BB^{\prime} which bisects major axis AA^{\prime} perpendicularly is called minor axis of the ellipse.

Equation of minor axis $x=0$
Length of minor axis $=2 b$
(iv) Centre :

The point of intersection of major axis and minor axis of an ellipse is called its centre.

For above standard ellipse

$$
\text { centre }=\mathrm{C}(0,0)
$$

(v) Directrix :

Equation of directrices are $x=a / e$ and $x=-a / e$.
(vi) Focus : $S(a e, 0)$ and $S^{\prime}(-a e, 0)$ are two foci of an ellipse.
(vii) Latus Rectum : Such chord which passes through either focus and perpendicular to the major axis is called its latus rectum.
(viii) Length of Latus Rectum :

Length of Latus rectum is given by $\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}$.
(ix) Relation between constant \mathbf{a}, \mathbf{b}, and \mathbf{e}

$$
\mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right) \Rightarrow \mathrm{e}=\sqrt{1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}
$$

3. Second form of Ellipse

$$
\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1 \quad \text { when } \mathrm{a}<\mathrm{b} .
$$

For this ellipse
(i) centre : $(0,0)$
(ii) vertices : $(0, b) ;(0,-b)$
(iii) foci : $(0$, be) ; $(0,-$ be $)$
(iv) major axis: equation $x=0$, length $=2 b$
(v) minor axis: equation $y=0$, length $=2 a$
(vi) directrices : $y=b / e, y=-b / e$
(vii) length of latus ractum $=2 \mathrm{a}^{2} / \mathrm{b}$
(viii) eccentricity : $e=\sqrt{1-\frac{a^{2}}{b^{2}}}$

4. General equation of the ellipse

The general equation of an ellipse whose focus is (h, k) and the directrix is the line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ and the eccentricity will be e. Then let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be any point on the ellipse which moves such that $\mathrm{SP}=\mathrm{ePM}$
$\Rightarrow\left(\mathrm{x}_{1}-\mathrm{h}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{k}\right)^{2}=\frac{\mathrm{e}^{2}\left(\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{c}\right)^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}}$
Hence the locus of $\left(x_{1}, y_{1}\right)$ will be given by
$\left(a^{2}+b^{2}\right)\left[(x-h)^{2}+(y-k)^{2}\right]=e^{2}(a x+b y+c)^{2}$
Which is the equation of second degree from which we can say that any equation of second degree represent equation of an ellipse.
Note : Condition for second degree in X \& Y to represent an ellipse is that if $h^{2}=a b<0 \&$ $\Delta=\mathrm{abc}+2 \mathrm{fgh}-\mathrm{af}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2} \neq 0$

5. Parametric forms of the Ellipse

Let the equation of ellipse in standard form will be given by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Then the equation of ellipse in the parametric form will be given by $\mathrm{x}=\mathrm{a} \cos \phi, \mathrm{y}=\mathrm{b} \sin \phi$ where ϕ is the
eccentric angle whose value vary from $0 \leq \phi<2 \pi$. Therefore coordinate of any point P on the ellipse will be given by $(\mathrm{a} \cos \phi, \mathrm{b} \sin \phi)$.

6. Point and Ellipse

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be any point and let $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ is the equation of an ellipse.

The point lies outside, on or inside the ellipse as if $S_{1}=\frac{\mathrm{x}_{1}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}_{1}^{2}}{\mathrm{~b}^{2}}-1>0,=0,<0$

7. Ellipse and a Line

Let the ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the given line be $y=m x+c$.

Solving the line and ellipse we get

$$
\frac{x^{2}}{a^{2}}+\frac{(m x+c)^{2}}{b^{2}}=1
$$

i.e. $\left(a^{2} m^{2}+b^{2}\right) x^{2}+2 m c a^{2} x+a^{2}\left(c^{2}-b^{2}\right)=0$
above equation being a quadratic in x.
\therefore discriminant $=4 m^{2} c^{2} a^{4}-4 a^{2}\left(a^{2} m^{2}+b^{2}\right)\left(c^{2}-b^{2}\right)$

$$
=b^{2}\left\{\left(a^{2} m^{2}+b^{2}\right)-c^{2}\right\}
$$

Hence the line intersects the ellipse in (i) two distinct points if $a^{2} m^{2}+b^{2}>c^{2}$
(ii) in one point if $c^{2}=a^{2} m^{2}+b^{2}$
(iii) does not intersect if $\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}<\mathrm{c}^{2}$
$\therefore \mathrm{y}=\mathrm{mx} \pm \sqrt{\left(\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}\right)}$ touches the ellipse and condition for tangency $c^{2}=a^{2} m^{2}+b^{2}$.
Hence $y=m x \pm \sqrt{\left(a^{2} m^{2}+b^{2}\right)}$, touches the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1 \mathrm{at}\left(\frac{ \pm \mathrm{a}^{2} \mathrm{~m}}{\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}}, \frac{ \pm \mathrm{b}^{2}}{\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}}\right)$.

8. Equation of the Tangent

(i) The equation of the tangent at any point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{x_{1}}{a^{2}}+\frac{\mathrm{yy}_{1}}{\mathrm{~b}^{2}}=1$.
(ii) The equation of tangent at any point ' ϕ ' is

$$
\frac{\mathrm{x}}{\mathrm{a}} \cos \phi+\frac{\mathrm{y}}{\mathrm{~b}} \sin \phi=1 .
$$

SOLVED EXAMPLES

Ex. 1 The equation of an ellipse whose focus is $(-1,1)$, eccentricity is $1 / 2$ and the directrix is $x-y+3=0$ is.
(A) $7 x^{2}+7 y^{2}+2 x y+10 x-10 y+7=0$
(B) $7 x^{2}+7 y^{2}+2 x y-10 x-10 y+7=0$
(C) $7 x^{2}+7 y^{2}+2 x y-10 x+10 y+7=0$
(D) None of these

Sol.[A] Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the ellipse whose focus is $S(-1,1)$ and the directrix is $x-y+3=0$.

$P M$ is perpendicular from $P(x, y)$ on the directrix

$$
x-y+3=0
$$

Then by definition

$$
\begin{aligned}
& \mathrm{SP}=\mathrm{ePM} \\
\Rightarrow & (\mathrm{SP})^{2}=\mathrm{e}^{2}(\mathrm{PM})^{2} \\
\Rightarrow & (\mathrm{x}+1)^{2}+(\mathrm{y}-1)^{2}=\frac{1}{4}\left\{\frac{\mathrm{x}-\mathrm{y}+3}{\sqrt{2}}\right\}^{2} \\
\Rightarrow & 8\left(\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{x}-2 \mathrm{y}+2\right) \\
= & x^{2}+\mathrm{y}^{2}+9-2 \mathrm{xy}+6 \mathrm{x}-6 \mathrm{y} \\
\Rightarrow & 7 \mathrm{x}^{2}+7 \mathrm{y}^{2}+2 \mathrm{xy}+10 \mathrm{x}-10 \mathrm{y}+7=0
\end{aligned}
$$

which is the required equation of the ellipse.

Ex. 2 The foci of an ellipse are $(\pm 2,0)$ and its eccentricity is $1 / 2$, the equation of ellipse is.
(A) $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
(B) $\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$
(C) $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$
(D) None of these

Sol.[B] Let the equation of the ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$,
Then coordinates of foci are $(\pm \mathrm{ae}, 0)$.
$\therefore \mathrm{ae}=2 \Rightarrow \mathrm{a} \times \frac{1}{2}=2 \quad\left[\because \mathrm{e}=\frac{1}{2}\right]$
$\Rightarrow \mathrm{a}=4$
We have $\mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)$
$\therefore \mathrm{b}^{2}=16\left(1-\frac{1}{4}\right)=12$
Thus, the equation of the ellipse is $\frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{12}=1$.

Ex. 3 The equation of the ellipse which passes through origin and has its foci at the points $(1,0)$ and $(3,0)$ is -
(A) $3 x^{2}+4 y^{2}=x$
(B) $3 x^{2}+y^{2}=12 x$
(C) $x^{2}+4 y^{2}=12 x$
(D) $3 x^{2}+4 y^{2}=12 x$

Sol.[D] Centre being mid point of the foci is

$$
\left(\frac{1+3}{2}, 0\right)=(2,0)
$$

Distance between foci $2 \mathrm{ae}=2$
$\mathrm{ae}=1$ or $\mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)$
$b^{2}=a^{2}-a^{2} e^{2} \Rightarrow a^{2}-b^{2}=1$
If the ellipse $\frac{(x-2)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then as it passes from $(0,0)$

$$
\frac{4}{a^{2}}=1 \Rightarrow a^{2}=4
$$

from (i) $\quad b^{2}=3$
Hence $\frac{(x-2)^{2}}{4}+\frac{y^{2}}{3}=1$
or $\quad 3 x^{2}+4 y^{2}-12 x=0$

Ex. 4 A man running round a racecourse notes that the sum of the distance of two flag posts from him is always 10 meters and the distance between the flag posts is 8 meters. The area of the path he encloses -
(A) 10π
(B) 15π
(C) 5π
(D) 20π

Sol.[B] The race course will be an ellipse with the flag posts as its foci. If a and b are the semi major and minor axes of the ellipse, then sum of focal distances $2 \mathrm{a}=10$ and $2 \mathrm{ae}=8$

$$
a=5, e=4 / 5
$$

$\therefore \quad \mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)=25\left(1-\frac{16}{25}\right)=9$
Area of the ellipse $=\pi \mathrm{ab}$

$$
=\pi .5 .3=15 \pi
$$

Ex. 5 The distance of a point on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ from the centre is 2 . Then eccentric angle of the point is -
(A) $\pm \frac{\pi}{2}$
(B) $\pm \pi$
(C) $\frac{\pi}{4}, \frac{3 \pi}{4}$
(D) $\pm \frac{\pi}{4}$

Sol.[C] Any point on the ellipse is
$(\sqrt{6} \cos \phi, \sqrt{2} \sin \phi)$, where ϕ is an eccentric angle.
It's distance from the center $(0,0)$ is given 2 .
$6 \cos ^{2} \phi+2 \sin ^{2} \phi=4$
or $3 \cos ^{2} \phi+\sin ^{2} \phi=2$
$2 \cos ^{2} \phi=1$
$\Rightarrow \cos \phi= \pm \frac{1}{\sqrt{2}} ; \phi=\frac{\pi}{4}, \frac{3 \pi}{4}$

Ex. 6 The equation of tangents to the ellipse $9 x^{2}+16 y^{2}=144$ which pass through the point $(2,3)$ -
(A) $y=3$
(B) $x+y=2$
(C) $x-y=3$
(D) $y=3 ; x+y=5$

Sol.[D] Ellipse $9 x^{2}+16 y^{2}=144$
or $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
Any tangent is $y=m x+\sqrt{16 m^{2}+9}$ it passes through (2,3)

$$
\begin{aligned}
& 3=2 m+\sqrt{16 m^{2}+9} \\
& (3-2 m)^{2}=16 m^{2}+9 \\
& m=0,-1
\end{aligned}
$$

Hence the tangents are $y=3, x+y=5$

Ex. 7 The line $x=a t^{2}$ meets the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in the real points if -
(A) $|t|<2$
(B) $|t| \leq 1$
(C) $|t|>1$
(D) None of these

Sol.[B] Putting $x=a t^{2}$ in the equation of the ellipse, we get
$\frac{a^{2} t^{4}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow y^{2}=b^{2}\left(1-t^{4}\right)$
$\mathrm{y}^{2}=\mathrm{b}^{2}\left(1-\mathrm{t}^{2}\right)\left(1+\mathrm{t}^{2}\right)$
This will give real values of y if
$\left(1-t^{2}\right) \geq 0|t| \leq 1$

Ex. 8 The equation $x^{2}+4 y^{2}+2 x+16 y+13=0$ represents a ellipse -
(A) whose eccentricity is $\sqrt{3}$
(B) whose focus is $(\pm \sqrt{3}, 0)$
(C) whose directrix is $x= \pm \frac{4}{\sqrt{3}}-1$
(D) None of these

Sol.[C] We have $\mathrm{x}^{2}+4 \mathrm{y}^{2}+2 \mathrm{x}+16 \mathrm{y}+13=0$
$\left(x^{2}+2 x+1\right)+4\left(y^{2}+4 y+4\right)=4$
$(x+1)^{2}+4(y+2)^{2}=4$
$\frac{(x+1)^{2}}{2^{2}}+\frac{(y+2)^{2}}{1^{2}}=1$

Comparing with $\frac{X^{2}}{a^{2}}+\frac{Y^{2}}{b^{2}}=1$
where $\quad X=x+1, Y=y+2$
and $\quad \mathrm{a}=2, \mathrm{~b}=1$
eccentricity of the ellipse
$e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{1}{4}}=\frac{\sqrt{3}}{2}$
Focus of the ellipse ($\pm \mathrm{ae}, 0$)
$X= \pm$ ae and $Y=0$
$x+1= \pm 2 \cdot \frac{\sqrt{3}}{2}$ and $y+2=0$
$\Rightarrow \mathrm{x}=-1 \pm \sqrt{3}$ and $\mathrm{y}=-2$
\therefore Focus $(-1 \pm \sqrt{3},-2)$
Directrix of the ellipse $X= \pm$ a/e
$x+1= \pm \frac{2}{\sqrt{3} / 2} ; \quad x= \pm \frac{4}{\sqrt{3}}-1$

Ex. 9 Product of the perpendiculars from the foci upon any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is -
(A) b
(B) a
(C) a^{2}
(D) b^{2}

Sol.[D] The equation of any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $y=m x+\sqrt{a^{2} m^{2}+b^{2}}$
$\Rightarrow \mathrm{mx}-\mathrm{y}+\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}=0$
The two foci of the given ellipse are $S(a e, 0)$ and $S^{\prime}(-a e, 0)$. let p_{1} and p_{2} be the lengths of perpendicular from S and S^{\prime} respectively on (i), Then
$\mathrm{p}_{1}=$ length of perpendicular from $\mathrm{S}(\mathrm{ae}, 0)$ on (i)
$\mathrm{p}_{1}=\frac{\mathrm{mae}+\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}}{\sqrt{\mathrm{~m}^{2}+1}}$
$\mathrm{p}_{2}=$ length of perpendicular from $\mathrm{S}^{\prime}(-\mathrm{ae}, 0)$ on (i)
$\mathrm{p}_{2}=\frac{-\mathrm{mae}+\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}}{\sqrt{\mathrm{~m}^{2}+1}}$
Now $\mathrm{p}_{1} \mathrm{p}_{2}$
$\left(\frac{\mathrm{mae}+\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}}{\sqrt{\mathrm{~m}^{2}+1}}\right)\left(\frac{-\mathrm{mae}+\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}}{\sqrt{\mathrm{~m}^{2}+1}}\right)$
$=\frac{\mathrm{a}^{2} \mathrm{~m}^{2}\left(1-\mathrm{e}^{2}\right)+\mathrm{b}^{2}}{1+\mathrm{m}^{2}} \because \mathrm{~b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)$
$=\frac{m^{2} b^{2}+b^{2}}{1+m^{2}}=\frac{b^{2}\left(m^{2}+1\right)}{m^{2}+1}=b^{2}$

Ex. 10 The equation of the ellipse whose axes are along the coordinate axes, vertices are $(\pm 5,0)$ and foci at $(\pm 4,0)$ is.
(A) $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
(B) $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
(C) $\frac{x^{2}}{25}+\frac{y^{2}}{12}=1$
(D) None of these

Sol.[A] Let the equation of the required ellipse be
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
The coordinates of its vertices and foci are $(\pm \mathrm{a}, 0)$ and $(\pm \mathrm{ae}, 0)$ respectively.
$\mathrm{a}=5$ and $\mathrm{ae}=4 \Rightarrow \mathrm{e}=4 / 5$.
Now, $\mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right) \Rightarrow \mathrm{b}^{2}=25\left(1-\frac{16}{25}\right)=9$.
Substituting the values of a^{2} and b^{2} in (1), we get $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$,
which is the equation of the required ellipse.

Ex. 11 Find the centre, the length of the axes and the eccentricity of the ellipse $2 x^{2}+3 y^{2}-4 x-12 y+13=0$.
Sol. The given equation can be rewritten as $2\left[x^{2}-2 x\right]+3\left[y^{2}-4 y\right]+13=0$ or $2(\mathrm{x}-1)^{2}+3(\mathrm{y}-2)^{2}=1$
or $\frac{(x-1)^{2}}{(1 / \sqrt{2})^{2}}+\frac{(y-2)^{2}}{(1 / \sqrt{3})^{2}}=1$,
Comparing with $\frac{X^{2}}{a^{2}}+\frac{Y^{2}}{b^{2}}=1$
\therefore Centre $\mathrm{X}=0, \mathrm{Y}=0$ i.e. $(1,2)$
Length of major axis $=2 \mathrm{a}=\sqrt{2}$
Length of minor axis $=2 b=2 / \sqrt{3}$ and
$e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\frac{1}{\sqrt{3}}$

Ex. 12 Find the equations of the tangents to the ellipse $4 x^{2}+3 y^{2}=5$ which are inclined at an angle of 60° to the axis of x . Also, find the point of contact.
Sol. The slope of the tangent $=\tan 60^{\circ}=\sqrt{3}$
Now, $4 x^{2}+3 y^{2}=5 \Rightarrow \frac{x^{2}}{5 / 4}+\frac{y^{2}}{5 / 3}=1$
This is of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where
$\mathrm{a}^{2}=\frac{5}{4}$ and $\mathrm{b}^{2}=\frac{5}{3}$. We know that the equations of the tangents of slope m to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are given by $y=m x \pm$ $\sqrt{a^{2} m^{2}+b^{2}}$ and the coordinates of the points of contact are $\left(\pm \frac{a^{2} \mathrm{~m}}{\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}}, \mp \frac{\mathrm{~b}^{2}}{\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}}\right)$

Here, $m=\sqrt{3}, a^{2}=5 / 4$ and $b^{2}=5 / 3$.
So, the equations of the tangents are
$y=\sqrt{3} x \pm \sqrt{\left(\frac{5}{4} \times 3\right)+\frac{5}{3}}$ i.e. $y=\sqrt{3} x \pm \sqrt{\frac{65}{12}}$
The coordinates of the points of contact are $\left(\pm \frac{5 \sqrt{3} / 4}{\sqrt{65 / 12}}, \mp \frac{5 / 3}{\sqrt{65 / 12}}\right)$ i.e
$\left(\pm \frac{3 \sqrt{65}}{26}, \mp \frac{2 \sqrt{195}}{39}\right)$

Ex. 13 The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, and having its centre $(0,3)$ is -
(A) 4
(B) 3
(C) $\sqrt{12}$
(D) $7 / 2$

Sol.[A] $e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{9}{16}} \quad \therefore e=\frac{\sqrt{7}}{4}$
\therefore Foci are $(\pm \mathrm{ae}, 0)$ or $(\pm \sqrt{7}, 0)$
Centre of circle is $(0,3)$ and passes through foci $(\pm \sqrt{7}, 0)$
\therefore Radius $=\sqrt{7+9}=4$

Ex. 14 The eccentricity of the ellipse represented by the equation $25 x^{2}+16 y^{2}-150 x-175=0$ is-
(A) $2 / 5$
(B) $3 / 5$
(C) $4 / 5$
(D) None of these

Sol.[B] $25\left(x^{2}-6 x+9\right)+16 y^{2}=175+225$
or $25(x-3)^{2}+16 y^{2}=400$ or $\frac{X^{2}}{16}+\frac{Y^{2}}{25}=1 .(b>a)$
Form $\frac{X^{2}}{a^{2}}+\frac{Y^{2}}{b^{2}}=1$
\therefore Major axis lies along y- axis. ;
$\therefore \mathrm{e}=\sqrt{1-\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}}=1-\sqrt{\frac{16}{25}}$;
$\therefore \mathrm{e}=\frac{3}{5}$

Ex. 15 For what value of λ does the line $y=x+\lambda$ touches the ellipse $9 x^{2}+16 y^{2}=144$.
Sol. \because Equation of ellipse is
$9 x^{2}+16 y^{2}=144 \quad$ or $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
Comparing this with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
then we get $\mathrm{a}^{2}=16$ and $\mathrm{b}^{2}=9$
\& comparing the line $\mathrm{y}=\mathrm{x}+\lambda$ with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
$\therefore \quad \mathrm{m}=1$ and $\mathrm{c}=\lambda$
If the line $y=x+\lambda$ touches the ellipse

$$
\begin{aligned}
& 9 x^{2}+16 y^{2}=144, \text { then } \\
& c^{2}=a^{2} m^{2}+b^{2}
\end{aligned}
$$

$\Rightarrow \lambda^{2}=16 \times 1^{2}+9$
$\Rightarrow \lambda^{2}=25$
$\therefore \lambda= \pm 5$

Ex. 16 Find the equations of the tangents to the ellipse $3 x^{2}+4 y^{2}=12$ which are perpendicular to the line $y+2 x=4$.
Sol. Let m be the slope of the tangent, since the tangent is perpendicular to the line $\mathrm{y}+2 \mathrm{x}=4$.
$\therefore \mathrm{m} \times-2=-1 \quad \Rightarrow \mathrm{~m}=\frac{1}{2}$
Since $3 x^{2}+4 y^{2}=12$
or $\quad \frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
Comparing this with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\therefore \mathrm{a}^{2}=4$ and $\mathrm{b}^{2}=3$
So the equation of the tangents are

$$
\begin{array}{r}
y=\frac{1}{2} x \pm \sqrt{4 x \frac{1}{4}+3} \\
\Rightarrow y=\frac{1}{2} x \pm 2 \quad \text { or } x-2 y \pm 4=0
\end{array}
$$

